Publications

Multi-level Monte Carlo methods using ensemble level mixed MsFEM for two-phase flow and transport simulations

Bibliography:

Y. Efendiev, C. Kronsbein, and O. Iliev. Multi-level Monte Carlo methods using ensemble level mixed MsFEM for two-phase flow and transport simulations. Computational Geosciences, 17 (5), pp. 833-850. ISSN: 1420-0597 (Print) 1573-1499 (Online), IF=1.422, 2013

Authors:

Y. Efendiev, C. Kronsbein, and O. Iliev.

Keywords:

Two-phase flow, Porous media, Multiscale methods, Multilevel Monte Carlo, Stochastic partial differential equations

Year:

2013

Abstract:

In this paper, we propose multilevel Monte Carlo (MLMC) methods that use ensemble level mixed multiscale methods in the simulations of multiphase flow and transport. The contribution of this paper is twofold: (1) a design of ensemble level mixed multiscale finite element methods and (2) a novel use of mixed multiscale finite element methods within multilevel Monte Carlo techniques to speed up the computations. The main idea of ensemble level multiscale methods is to construct local multiscale basis functions that can be used for any member of the ensemble. In this paper, we consider two ensemble level mixed multiscale finite element methods: (1) the no-local-solve-online ensemble level method (NLSO); and (2) the local-solve-online ensemble level method (LSO). The first approach was proposed in Aarnes and Efendiev (SIAM J. Sci. Comput. 30(5):2319-2339, 2008) while the second approach is new. Both mixed multiscale methods use a number of snapshots of the permeability media in generating multiscale basis functions. As a result, in the off-line stage, we construct multiple basis functions for each coarse region where basis functions correspond to different realizations. In the no-local-solve-online ensemble level method, one uses the whole set of precomputed basis functions to approximate the solution for an arbitrary realization. In the local-solve-online ensemble level method, one uses the precomputed functions to construct a multiscale basis for a particular realization. With this basis, the solution corresponding to this particular realization is approximated in LSO mixed multiscale finite element method (MsFEM). In both approaches, the accuracy of the method is related to the number of snapshots computed based on different realizations that one uses to precompute a multiscale basis. In this paper, ensemble level multiscale methods are used in multilevel Monte Carlo methods (Giles 2008a, Oper.Res. 56(3):607-617, b). In multilevel Monte Carlo methods, more accurate (and expensive) forward simulations are run with fewer samples, while less accurate (and inexpensive) forward simulations are run with a larger number of samples. Selecting the number of expensive and inexpensive simulations based on the number of coarse degrees of freedom, one can show that MLMC methods can provide better accuracy at the same cost as Monte Carlo (MC) methods. The main objective of the paper is twofold. First, we would like to compare NLSO and LSO mixed MsFEMs. Further, we use both approaches in the context of MLMC to speedup MC calculations.

ISSN:

See the paper