Publications

A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples

Bibliography:

 H. Osman, A. Salama, S. Sun, and K. Bao, “A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples”, AIP Conf. Proc. 1453, pp. 217-222 (6 pages), 4th International Conference on Porous Media and its Applications in Science, Engineering and Industry, June 17-22, 2012, Potsdam, Germany.

Authors:

H. Osman, A. Salama, S. Sun, K. Bao

Keywords:

Porous media, finite difference method

Year:

2012

Abstract:

It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.

ISSN:

see paper